THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 7 Solutions
 28th March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. By definition, a ring homomorphism $\varphi: S \rightarrow R$ has to satisfy $\varphi\left(1_{S}\right)=1_{R}$ and $\varphi\left(0_{S}\right)=$ 0_{R}. If S is the zero ring, then $1_{S}=0_{S}$, and if $\varphi: 0 \rightarrow R$ is a ring homomorphism, then $1_{R}=\varphi\left(1_{S}\right)=\varphi\left(0_{S}\right)=0_{R}$, and $1_{R}=0_{R}$ holds true only if R is also the zero ring.
2. We will consider $\mathbb{Z}_{m n} \cong \mathbb{Z} / m n \mathbb{Z}$ as the quotient ring. In that case, $\phi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a well-defined ring homomorphism requires checking that $\phi(a+m n)=\phi(a)$ for any $a \in \mathbb{Z}$, since a and $a+m n$ represents the same element in the quotient ring $\mathbb{Z}_{m n}$. Indeed, $\phi(a+m n)=\left((a+m n)_{m},(a+m n)_{n}\right)=\left(a_{m}, a_{n}\right)=\phi(a)$, therefore proving that ϕ is well-defined. The fact that ϕ is a ring homomorphism follows from the definition of addition and multiplication in \mathbb{Z}_{m} and \mathbb{Z}_{n}, i.e. $a+_{m} b$ is defined as the remainder of $a+b$ modulo m, therefore $\phi(a+b)=\left((a+b)_{m},(a+b)_{n}\right)=\left(a_{m}+b_{m}, a_{n}+b_{n}\right)$. The case for multiplication is similar. Finally $\phi(1)=(1,1)$ is clearly the multiplicative identity in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.

To show that this is an isomorphism, first note that $\left|\mathbb{Z}_{m n}\right|=\left|\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right|=m n$, therefore to show that ϕ is bijective, it suffices to show that it is injective. Note that if $\phi(a)=$ $\left(a_{m}, a_{n}\right)=(0,0)$, then a is divisible by both m and n, and thus a is a multiple of $m n=$ $\operatorname{lcm}(m, n) \operatorname{gcd}(m, n)=\operatorname{lcm}(m, n)$. So $a=0 \in \mathbb{Z}_{m n}$.
Remark: More ideally, one should prove this by invoking first isomorphism theorem on the homomorphism $\psi: \mathbb{Z} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ since such a homomorphism is necessarily welldefined and canonical.
3. $Z(R):=\{r \in R \mid r s=s r, \forall s \in R\}$. It suffices to show that $Z(R)$ is closed under addition, additive inverse and multiplication, and that $1_{R} \in Z(R)$. The last property is clear since $1_{R} r=r 1_{R}=r$ by definition of multiplicative identity. For closedness, note that if $r, s \in Z(R)$, then $(r-s) t=r t-s t=t r-t s=t(r-s)$, so $r-s \in Z(R)$ and it is a subgroup. Finally for closedness under multiplication, if $r, s \in Z(R)$, then $r s t=r t s=t r s$, so $r s \in Z(R)$.
4. Let $x \in I_{a}$, then $a x=0$, so if $r \in R$, we also have $a(r x)=r(a x)=r 0=0$, so that $r x \in I_{a}$. It is also clear that I_{a} is an additive subgroup, since $a x=0$ if and only if $-a x=0$, and if $x, y \in I_{a}$, we have $a(x-y)=a x-a y=0-0=0$, so that $x-y \in I_{a}$. The ideal I_{a} is called the annihilator of a.
5. (a) See Tutorial 9 Q1.
(b) See Tutorial 9 Q1.
(c) $I J$ is clearly closed under addition since sum of two elements of the form $r=$ $\sum_{i=1}^{n} a_{i} b_{i}$ is still an element of the same form. If $r=\sum_{i=1}^{n} a_{i} b_{i} \in I J$ then its additive inverse $-r=\sum_{i=1}^{n}\left(-a_{i}\right) b_{i} \in I J$ since $-a_{i} \in I$. Therefore $I J$ is an additive subgroup. Now pick $r \in I J$ and $x \in R$ be any element, then $x r=$ $\sum_{i=1}^{n}\left(x a_{i}\right) b_{i} \in I J$ since $x a_{i} \in I$ as I is an ideal. Similarly, $r x=\sum_{i=1}^{n} a_{i}\left(b_{i} x\right) \in$ $I J$ as $b_{i} x \in J$.
6. See Tutorial 9 Q7.

Optional Part

1. Consider the map $\phi: \mathbb{R}[x] \rightarrow M_{2}(\mathbb{R})$ defined by $\phi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ for any $a \in \mathbb{R}$ and $\phi(x)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. We will show that ϕ is a ring homomorphism such that $\operatorname{im}(\phi)=R$ and $\operatorname{ker}(\phi)=\left(x^{2}+1\right)$, therefore by first isomorphism theorem $\mathbb{R}[x] /\left(x^{2}+1\right) \cong R$. On the other hand, $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$ according to results from the lectures.
Given any $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$, from the definition we have $\phi(f(x))=\sum_{i=0}^{n} a_{i} \phi(x)^{i}=$ $f(\phi(x))$, i.e. the same polynomial expression evaluating at the matrix $\phi(x)$. From this, it is clear that $\phi(f(x)+g(x))=f(\phi(x))+g(\phi(x))=\phi(f(x))+\phi(g(x))$ and $\phi(f(x) g(x))=$ $f(\phi(x)) g(\phi(x))=\phi(f(x)) \phi(g(x))$. Finally, $\phi(1)=I$ is the identity matrix. So ϕ is indeed a ring homomorphism.
It is also clear that $\left.\phi(x)^{2}=I=\phi(1)\right)$ and so $\phi\left(x^{2}-1\right)=0$. So $\left(x^{2}-1\right) \subset \operatorname{ker} \phi$. Conversely if $\phi(f(x))=f(\phi(x))=0$ then by linear algebra $f(x)$ is a multiple of the minimal polynomial of $\phi(x)$, which can be easily seen to be $x^{2}+1$ (it has distinct eigenvalues, so the minimal and characteristic polynomials coincide). This implies that $\operatorname{ker} \phi \subset\left(x^{2}+1\right)$, as claimed.
Therefore, given a general $f(x) \in \mathbb{R}[x]$, we may write $f(x)=\left(x^{2}+1\right) p(x)+q(x)$ where $p(x), q(x) \in \mathbb{R}[x]$ with $\operatorname{deg} q<\operatorname{deg}\left(x^{2}+1\right)=2$. Writing $q(x)=b x+a$, then $\phi(f(x))=\phi\left(x^{2}+1\right) \phi(p(x))+\phi(b x+a)=b \phi(x)+\phi(a)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$. Therefore the image of ϕ is precisely R. This completes the proof.
2. (a) No, it is not a group homomorphism on the underlying additive groups. For example, $\phi(n+m)=(n+m)^{2} \neq n^{2}+m^{2}=\phi(n)+\phi(m)$ for general m, n.
(b) Yes. It suffices to prove that it is well-defined. Then it is a ring homomorphism for the same reason as described in Q 2 of compulsory part. For well-definedness it suffices to check $\phi(s+6)=\phi(s)$, which is true as 6 has remainder 0 modulo 3 .
(c) No, it is not a well-defined group homomorphism. For example, $3 \mathbb{Z}=\phi(0)=$ $\phi(3+4)=\phi(3)+\phi(4)=(3+3 \mathbb{Z})+(4+3 \mathbb{Z})=7+3 \mathbb{Z}=1+3 \mathbb{Z}$, which is clearly a contradiction.
3. No, a ring homomorphism $\phi: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{5}$ (if exists), would satisfy $\phi(1)=1$. Therefore $0=\phi(0)=\phi(7 \cdot 1)=7 \phi(1)=2 \in \mathbb{Z}_{5}$, which is clearly a contradiction.
4. (a) It is possible, for example the one exhibited in optional Q2b.
(b) It is also possible, for any ring S, we always have a (unique) homomorphism $\mathbb{Z} \rightarrow S$ by sending $1 \mapsto 1_{S}$, regardless whether S is an integral domain. For example, one may consider the quotient map $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ for n a composite number.
5. (a) No, if $f \in I$, then $2 f \notin I$ since $2 a_{0}$ is no longer odd.
(b) No, it is not an additive subgroup. For example, $2 x^{2}+x,-2 x^{2} \in I$ but $\left(2 x^{2}+x\right)-$ $2 x^{2}=x \notin I$.
(c) Yes, clearly I is additive as sum/difference of even numbers is still even. And if $r+6 \mathbb{Z} \in I$ and $k+6 \mathbb{Z} \in \mathbb{Z} / 6 \mathbb{Z}$, we have r is even and $(r+6 \mathbb{Z})(k+6 \mathbb{Z})=r k+6 \mathbb{Z}$ with $r k$ even, so the product is in I, so it forms an ideal.
6. By tutorial 9 Q 4 , the ideal $(m) \cap(n)$ is principal and is given by (k) where k is the smallest positive integer in $(m) \cap(n)$. Without loss of generality we may assume m, n are positive integers as well, otherwise simply replace m by $-m$.
Therefore, it suffices to show that the smallest positive integer in $(m) \cap(n)$ is $m n$. This is clear since (m) and (n) consist of all multiples of m and n respectively, so $(m) \cap(n)$ consists of all common multiples of m and n, thus the smallest such positive integer is the least common multiple, i.e. $k=\operatorname{lcm}(m, n)=m n / \operatorname{gcd}(m, n)=m n$.
