
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH 2078 Honours Algebraic Structures 2023-24
Homework 7 Solutions

28th March 2024
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Compulsory Part

1. By definition, a ring homomorphism φ : S → R has to satisfy φ(1S) = 1R and φ(0S) =
0R. If S is the zero ring, then 1S = 0S , and if φ : 0 → R is a ring homomorphism, then
1R = φ(1S) = φ(0S) = 0R, and 1R = 0R holds true only if R is also the zero ring.

2. We will consider Zmn
∼= Z/mnZ as the quotient ring. In that case, ϕ : Zmn → Zm ×Zn

is a well-defined ring homomorphism requires checking that ϕ(a +mn) = ϕ(a) for any
a ∈ Z, since a and a+mn represents the same element in the quotient ring Zmn. Indeed,
ϕ(a + mn) = ((a + mn)m, (a + mn)n) = (am, an) = ϕ(a), therefore proving that ϕ
is well-defined. The fact that ϕ is a ring homomorphism follows from the definition of
addition and multiplication in Zm and Zn, i.e. a+m b is defined as the remainder of a+ b
modulo m, therefore ϕ(a + b) = ((a + b)m, (a + b)n) = (am + bm, an + bn). The case
for multiplication is similar. Finally ϕ(1) = (1, 1) is clearly the multiplicative identity in
Zm × Zn.

To show that this is an isomorphism, first note that |Zmn| = |Zm × Zn| = mn, therefore
to show that ϕ is bijective, it suffices to show that it is injective. Note that if ϕ(a) =
(am, an) = (0, 0), then a is divisible by both m and n, and thus a is a multiple of mn =
lcm(m,n) gcd(m,n) = lcm(m,n). So a = 0 ∈ Zmn.

Remark: More ideally, one should prove this by invoking first isomorphism theorem on
the homomorphism ψ : Z → Zm × Zn since such a homomorphism is necessarily well-
defined and canonical.

3. Z(R) := {r ∈ R| rs = sr, ∀s ∈ R}. It suffices to show that Z(R) is closed under
addition, additive inverse and multiplication, and that 1R ∈ Z(R). The last property is
clear since 1Rr = r1R = r by definition of multiplicative identity. For closedness, note
that if r, s ∈ Z(R), then (r − s)t = rt − st = tr − ts = t(r − s), so r − s ∈ Z(R)
and it is a subgroup. Finally for closedness under multiplication, if r, s ∈ Z(R), then
rst = rts = trs, so rs ∈ Z(R).

4. Let x ∈ Ia, then ax = 0, so if r ∈ R, we also have a(rx) = r(ax) = r0 = 0, so that
rx ∈ Ia. It is also clear that Ia is an additive subgroup, since ax = 0 if and only if
−ax = 0, and if x, y ∈ Ia, we have a(x− y) = ax− ay = 0− 0 = 0, so that x− y ∈ Ia.
The ideal Ia is called the annihilator of a.

5. (a) See Tutorial 9 Q1.

(b) See Tutorial 9 Q1.



(c) IJ is clearly closed under addition since sum of two elements of the form r =∑n
i=1 aibi is still an element of the same form. If r =

∑n
i=1 aibi ∈ IJ then its

additive inverse −r =
∑n

i=1(−ai)bi ∈ IJ since −ai ∈ I . Therefore IJ is an
additive subgroup. Now pick r ∈ IJ and x ∈ R be any element, then xr =∑n

i=1(xai)bi ∈ IJ since xai ∈ I as I is an ideal. Similarly, rx =
∑n

i=1 ai(bix) ∈
IJ as bix ∈ J .

6. See Tutorial 9 Q7.

Optional Part

1. Consider the map ϕ : R[x] → M2(R) defined by ϕ(a) =

(
a 0
0 a

)
for any a ∈ R and

ϕ(x) =

(
0 1
−1 0

)
. We will show that ϕ is a ring homomorphism such that im(ϕ) = R

and ker(ϕ) = (x2 + 1), therefore by first isomorphism theorem R[x]/(x2 + 1) ∼= R. On
the other hand, R[x]/(x2 + 1) ∼= C according to results from the lectures.

Given any f(x) =
∑n

i=0 aix
i, from the definition we have ϕ(f(x)) =

∑n
i=0 aiϕ(x)

i =
f(ϕ(x)), i.e. the same polynomial expression evaluating at the matrix ϕ(x). From this, it
is clear that ϕ(f(x)+g(x)) = f(ϕ(x))+g(ϕ(x)) = ϕ(f(x))+ϕ(g(x)) and ϕ(f(x)g(x)) =
f(ϕ(x))g(ϕ(x)) = ϕ(f(x))ϕ(g(x)). Finally, ϕ(1) = I is the identity matrix. So ϕ is
indeed a ring homomorphism.

It is also clear that ϕ(x)2 = I = ϕ(1)) and so ϕ(x2 − 1) = 0. So (x2 − 1) ⊂ kerϕ. Con-
versely if ϕ(f(x)) = f(ϕ(x)) = 0 then by linear algebra f(x) is a multiple of the minimal
polynomial of ϕ(x), which can be easily seen to be x2 + 1 (it has distinct eigenvalues, so
the minimal and characteristic polynomials coincide). This implies that kerϕ ⊂ (x2+1),
as claimed.

Therefore, given a general f(x) ∈ R[x], we may write f(x) = (x2 + 1)p(x) + q(x)
where p(x), q(x) ∈ R[x] with deg q < deg(x2 + 1) = 2. Writing q(x) = bx + a, then

ϕ(f(x)) = ϕ(x2 + 1)ϕ(p(x)) + ϕ(bx + a) = bϕ(x) + ϕ(a) =

(
a b
−b a

)
. Therefore the

image of ϕ is precisely R. This completes the proof.

2. (a) No, it is not a group homomorphism on the underlying additive groups. For exam-
ple, ϕ(n+m) = (n+m)2 ̸= n2 +m2 = ϕ(n) + ϕ(m) for general m,n.

(b) Yes. It suffices to prove that it is well-defined. Then it is a ring homomorphism
for the same reason as described in Q2 of compulsory part. For well-definedness it
suffices to check ϕ(s+ 6) = ϕ(s), which is true as 6 has remainder 0 modulo 3.

(c) No, it is not a well-defined group homomorphism. For example, 3Z = ϕ(0) =
ϕ(3 + 4) = ϕ(3) + ϕ(4) = (3 + 3Z) + (4 + 3Z) = 7 + 3Z = 1 + 3Z, which is
clearly a contradiction.

3. No, a ring homomorphism ϕ : Z7 → Z5 (if exists), would satisfy ϕ(1) = 1. Therefore
0 = ϕ(0) = ϕ(7 · 1) = 7ϕ(1) = 2 ∈ Z5, which is clearly a contradiction.

4. (a) It is possible, for example the one exhibited in optional Q2b.



(b) It is also possible, for any ring S, we always have a (unique) homomorphism Z → S
by sending 1 7→ 1S , regardless whether S is an integral domain. For example, one
may consider the quotient map Z → Z/nZ for n a composite number.

5. (a) No, if f ∈ I , then 2f ̸∈ I since 2a0 is no longer odd.

(b) No, it is not an additive subgroup. For example, 2x2 + x,−2x2 ∈ I but (2x2 + x)−
2x2 = x ̸∈ I .

(c) Yes, clearly I is additive as sum/difference of even numbers is still even. And if
r+6Z ∈ I and k+6Z ∈ Z/6Z, we have r is even and (r+6Z)(k+6Z) = rk+6Z
with rk even, so the product is in I , so it forms an ideal.

6. By tutorial 9 Q4, the ideal (m) ∩ (n) is principal and is given by (k) where k is the
smallest positive integer in (m) ∩ (n). Without loss of generality we may assume m,n
are positive integers as well, otherwise simply replace m by −m.

Therefore, it suffices to show that the smallest positive integer in (m) ∩ (n) is mn. This
is clear since (m) and (n) consist of all multiples of m and n respectively, so (m) ∩ (n)
consists of all common multiples of m and n, thus the smallest such positive integer is
the least common multiple, i.e. k = lcm(m,n) = mn/ gcd(m,n) = mn.


